Power Asymmetries in the Cosmic Microwave Background Temperature and Polarization patterns
نویسندگان
چکیده
We test the asymmetry of the Cosmic Microwave Background anisotropy jointly in temperature and polarization. We study the hemispherical asymmetry, previously found only in the temperature field, with respect to the axis identified by Hansen et al. (2009). To this extent, we make use of the low resolution WMAP 5 year temperature and polarization Nside = 16 maps and the optimal angular power spectrum estimator BolPol (Gruppuso et al. 2009). We consider two simple estimators for the power asymmetry and we compare our findings with Monte Carlo simulations which take into account the full noise covariance matrix. We confirm an excess of power in temperature angular power spectrum in the Southern hemisphere at a significant level, between 3σ and 4σ depending on the exact range of multipoles considered. We do not find significant power asymmetry in the gradient (curl) component EE (BB) of polarized angular spectra. Also cross-correlation power spectra, i.e. TE, TB, EB, show no significant hemispherical asymmetry. We also show that the Cold Spot found by Vielva et al. (2004) in the Southern Galactic hemisphere does not alter the significance of the hemispherical asymmetries on multipoles which can be probed by maps at resolution Nside = 16. Although the origin of the hemispherical asymmetry in temperature remains unclear, the study of the polarization patter could add useful information on its explanation. We therefore forecast by Monte Carlo the Planck capabilities in probing polarization asymmetries.
منابع مشابه
Weak lensing of the cosmic microwave background by foreground gravitational waves
Weak lensing distortion of the background cosmic microwave background (CMB) temperature and polarization patterns by the foreground density fluctuations is well studied in the literature. We discuss the gravitational lensing modification to CMB anisotropies and polarization by a stochastic background of primordial gravitational waves between us and the last scattering surface. While density flu...
متن کاملA Beginner’s Guide to the Theory of CMB Temperature and Polarization Power Spectra in the Line-of-Sight Formalism
We present here a detailed, self–contained treatment of the mathematical formalism for describing the theory of polarized anisotropy in the cosmic microwave background. This didactic review is aimed at researchers who are new to the field. We first develop the mathematical tools for describing polarized scattering of CMB photons. Then we take the reader through a detailed derivation of the line...
متن کاملPolarization of the Cosmic Microwave Background Radiation
The CMB radiation is completely characterized by its temperature anisotropy and polarization in each direction in the sky. Today, studies of the temperature anisotropies in the CMB have provided strong constraints on many of the cosmological parameters. However, for precision cosmology we still need to consider the polarization information of the CMB to break some of the degenerecies that exist...
متن کاملThe Cosmic Microwave Background: beyond the Power Spectrum
Much recent work on the cosmic microwave background (CMB) has focussed on the angular power spectrum of temperature anisotropies and particularly on the recovery of cosmological parameters from acoustic peaks in the power spectrum. However, there is more that can conceivably be done with CMB measurements. Here I briefly survey a few such ideas: cross-correlation with other cosmic backgrounds as...
متن کاملImproved simulation of non–Gaussian temperature and polarization CMB maps
We describe an algorithm to generate temperature and polarization maps of the cosmic microwave background radiation containing non–Gaussianity of arbitrary local type. We apply an optimized quadrature scheme that allows us to predict and control integration accuracy, speed up the calculations, and reduce memory consumption by an order of magnitude. We generate 1000 non– Gaussian CMB temperature...
متن کامل